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Formulation anti Numerical Solution of a Set of Dynamical Equations for the
Regge Pole Parameters*
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In a previous paper, the principles of analyticity and unitarity were shown to lead to a set of coupled
nonlinear integral equations for the Regge pole parameters. In this paper, we demonstrate, for both boson
and fermion trajectories, that these equations can be written in a very simple form which makes many of
their mathematical properties transparent and permits their numerical solution by iteration. We then
proceed to carry out their numerical solution in a number of interesting cases. Because our equations are
approximate, we 6rst solved the equations in the potential-theory case, where our results could be com-
pared with those obtained from the Schrodinger equation. The agreement in most cases is good. Then we
turn to the determination of the Regge pole parameters which describe relativistic 2fw scattering at high
energies. Neglecting the inelastic contributions, we calculate the Pomeranchuk trajectory, the p-meson
trajectory, and the second vacuum trajectory 2". One notable result of this set of calculations is that the
function Re n(t) for the Pomeranchulc trajectory, as determined by our equations, agrees well with the
results obtained by Foley et al from an. analysis of the s. p angular distributions in the range —0.8(BeV/c)'
&t& —0.2(BeV/c)'. No spin-2 resonanace is found to lie on this trajectory. As for the p trajectory, we find
that Ir, (t), —0.8(BeV/c)'&t&0& is larger than 0.9 for a wide range of input parameters. The width of the
p resonance, as determined from our equation, is several times larger than the experimental width. This
probably means that inelastic contributions must be included to obtain a correct value for the width.
Finally, we outline various problems which remain to be investigated.

I. INTRODUCTION

'F Regge poles are to play an important role in under-
- standing the properties of high-energy scattering

cross sections and of the many newly observed reso-
nances, it appears essential to have a method for the
dynamical determination of the Regge pole parameters.
This belief is based on the following considerations:

(1) Recent measurements of the angular distributions
in srp and pp scattering' ' at high energies (15&
s/2srtAI'(25) have been analyzed on the basis of a Regge
pole model. The constancy of the total cross sections in
the two systems at these energies at first suggested that
one can assume that the dominant contribution to the
cross sections comes from the Pomeranchuk trajectory.
That this assumption cannot be correct in both cases,
at least as far as the differential cross sections are con-
cerned, is shown by the facts that almost no diffraction
shrinking is observed in the srp system while consider-
able shrinking is observed in the pp system. If the
hypothesis that Regge poles dominate the high-energy
scattering is still valid, it must mean that in the present
energy range the analysis of the cross sections is compli-
cated by the presence of several trajectories contributing
in an important way. If this is the case, it would seem
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that reasonably clear cut experimental tests of the Regge
predictions about total cross sections and diffraction
peaks would be possible only if the Regge pole param-
eters involved were known functions.
(2) There is some reason to believe' that when multi-
particle states are included in the analysis of relativistic
scattering processes, the analyticity properties of the S
matrix in the J plane will be complicated by the pres-
ence of cuts in addition to simple poles. This circum-
stance would result in further ambiguities in the in-
terpretation of experimental data, which would be
somewhat alleviated if the pole parameters were known.

(3) It is a consequence of the Regge formalism that a
set of resonances or bound states, all having the same
quantum numbers including J parity, but having differ-
ent values of J and occurring at different energies, will
all lie along the same Regge trajectory' ' Ir(t). The
existence of Regge cuts should not lead to any ambigu-
ities in experimentally establishing the existence and
properties of any such resonances. For this reason,
the possibility of grouping the new resonances in Regge
families, and of correlating a set of resonance parameters
with each other and with the observed total cross sec-
tions and angular distributions remains as an interesting
application of the Regge theory. To make good use of
this possibility, however, it seems essential to have a
method with which to determine the Regge pole
parameters.

In a previous paper, ' the authors made use of the
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analytic properties of the Regge pole parameters n(t)
and r(t) plus the unitarity condition satisfied by the
partial-wave amplitude to derive a coupled set of inte-
gral equations which determine the location n(t) and
the residue r(t) of a Regge pole as functions of t. The
equations obtained are approximate in that: (i) Only
two-body scattering processes are included, and (ii)
the unitarity condition is employed in a form which is
valid only when Imn(t) is small. This latter condition
implies that the influence of the coupling of one Regge
pole ta another is neglected. Many aspects of these
equations were not understood at the time, in particular,
the circumstances under which a unique solution might
exist were not known. Moreover, numerical solutions
had not been obtained and a quantitative idea of the
usefulness or range of validity of the approximations
made had not been arrived at.

It is our purpose in thi:s paper to discuss the properties
of the above mentioned equations in considerably more
detail and to obtain numerical solutions of them in
several interesting cases.

In Sec. Il, we show how to transform our original
set of equations so as to obtain an integral equation
involving the single unknown function Imn(t). Once
Imn(t) is obtained by solving this equation, we obtain
Ren(t) and the residue r(t) by performing simple integral
transforms. The derivation has been carried out for
boson and fermion Regge trajectories.

Because the equations we use are approximate, it is
very desirable to compare our results for the Regge
parameters with those obtained in some rigorous way.
This is possible only in potential theory. Consequently,
in Sec. III, we specialize the equations derived in Sec.
II to their nonrelativistic form. We also make in Sec.
III a number of comments on the more formal mathe-
matical properties of these equations, especially those
related to the uniqueness question.

In Sec. IV, we present our calculations of the Regge
parameters in the case of scattering in a single Yukawa
potential of unit range. A wide variety of potential
strengths are considered. These results are critically
compared to those obtained by Ahmadzadeh, Burke, and
Tate' and by Lovelace and Masson. '

In Sec. V, we solve the equations for the case of rela-
tivistic m~ scattering. In the case of mx scattering, we
have obtained the positions of the poles describing
the Pomeranchuk trajectory, the p-meson trajectory,
and the second vacuum trajectory introduced by
Igi.' The properties of the I' trajectory, as com-
puted from our equations, agree well with those as-
certained by Foley et al 'from an a.nalysis of m p
angular distributions. We use our results ori the p-meson
trajectory to obtain n, (t), t &0, which governs the energy

' A. Ahmadzadeh, P. Burke, and C. Tate, Phys. Rev. 131, 1315
(1963).' C. Lovela'ee and D. Masson, Nuovo Cimento 26, 472 (1962).

'P K. Igi,' Phys. Rev. Letters 9, 76 (1962).

dependence of cr -„—'o +„and of the corresponding
angular distributions.

Finally, in Sec. VI, we summarize the conclusions
reached in this paper and outline a number of interesting
problems which remain to be investigated.

(2.1)

The situation is not so simple for the function
r(t)/q' &'&. The difficulty is that, because n(t) presumably
approaches a negative quantity as t ~ &~, we cannot
always write a dispersion relation for r(t)/q' i'& in the
once-subtraced form of Eq. (2.1). We can avoid this

difhculty in the case of equal mass scattering by dealing
with the function r(t)e '~ &" But if w.e consider the
scattering of particles of unequal mass, a dispersion
relation for r(t) would be complicated by the presence
of kinematic cuts coming from the factor q' &'~.

We have found that, for the purpose of obtaining
equations for the Regge pole parameters from the princi-
ples of analyticity and unitarity, it is wholly adequate
simply to know that r(t)/q' i'& is real analytic, and no
occasion will arise where it is necessary to have a dis-
persion relation for r(t)/q'~"&. Therefore, 'we can avoid
the complications mentioned above.

We shall use the following kinematic variables:

t= 4''
= total c.m. energy squared in t channel
=m, '+mes+2(L(mo'+q') (mss+q') jl+q ); (2.2a)

and

"H. Cheng, Phys. Rev. 130, 1283 (1963).

II. FORMULATION OF A SET OF INTEGRAL
EQUATIONS FOR THE REGGE POLE
PARAMETERS ' RELATIVISTIC CASE

Let us consider the relativistic scattering of two
spinless particles a and b with masses m and mq. We
shall discuss the Regge poles of the partial-wave ampli-
tude in the t channel for the reaction a+9 ~ a+b. Our
purpose in this section is to derive a set of equations
which will allow an approximate dynamical deterrnina-
tion of the position n(t) of the Regge pole and of its
residue r(t), which is equal to Res LA(n(t), t)j.

The authors have recently suggested' that the Regge
parameters can be determined from. .the principles of
analyticity and unitarity. If crossing" of trajectories is
neglected& then both n(t) and r(t)/q'~{'& are real analytic
functions of t with branch cuts from Tp to ~ where Tp
is the threshold value of t for the reaction a+b~a+b.

The function n(t) is assumed to have a behavior at
infinity which permits us to express its real analyticity
by means of a dispersion relation of the 'simple form
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where q=c.m. momentum of an incoming or outgoing
particle.

The unitarity condition shall be written as

r(t) = Imn(t) (&o/q), t& Tp. (23)

Equation (2.3) is an approximate form of the unitarity
condition

LA (l, t) —A*(P,t) j/2i= (q/~)A*(l*, t)A(t, t) (2.4)

One point is worth noticing. We know that Imn(t) is
always real, but no may be complex, and at first sight,
the right side of (2.10) may appear to be complex.
However, we can easily see that we can replace ~p by
Renp and the integral by its Cauchy principle part, and
then the right side of (2.10) is actually real.

Now let us determine the function F(t). We shall as-
sume that r(t) has no poles, in which case F(t) is entire
in t We. obtain from Eq. (2.10) that

which is valid when l=n(t) and Ren(Tp) & —-', .
F. Zachariasen" has pointed out to us that we can

use Eq. (2.1), (2.3), and the real analyticity of r(t)/q' &o

to derive a very simple integral equation for Imn(t).
This can be done as follows:

Since we know that the function r(t)/q' i'& i
analytic, we have

lnq' "Imn(t')
dt'Imn(t) —~ liF(t)q' ' exp

face
To t —to

=XF(t)q' &"', (2.11)

r*(t)=r(te)e "-&"& t& Tp.

s real
where P is a constant. If we now require that Imn(t)
vanishes as t ~ ~, then F(t), being entire, is a poly-

(2.5a) nomial of order rs satisfying the inequality

According to Eq. (2.3), r(t+) is real. Therefore,

r(t+) =r(t-)e-"-&'-i,

where t+=t+ie. Let us write

I( n(~—)

(2 5b) Moreover, from (2.9), we find

qp"'F (tp) =«(tp) .

(2.12)

(2.13)

Thus, we can infer that the general form of F(t) is

where F(t) is a rational function of t, and U(t) is an
analytic function of t cut from Tp to ~.The discontinu-
ity of U(t) across the branch cut can be obtained from
(2.5) and (2.6);

r(t,)-
F(t) = II

go~~' '-~ to —t
(2.14)

where the t; specify the location of the zeroes of r(t).
We shall go into the question of zeroes, and the connec-
tion between the number of zeroes and the asymptotic
behavior of Imn(t) more fully in Sec. III which treats
the otential theor case. If we suppose that the tra-

or 1 zero, for example, then the
e the form:

U(t+) U(t )=—2i Im—n(t) lnq'. (2.7)

Consequently, we can apply Cauchy's theorem to the
analytic function U(t) to find

t —tp
" ln(q's/q') Imn(t')

dt (2.15)Xexp
(t—tp)

"ln(q"/q') Imn(t')
dt' , (2.9)

(t' —t) (t' —t,)

t' —topXexp
)t t, q t qq'p-

=~(to)l
Gl Etp —tiJ Eqp)where the dispersion relation for n(t), Eq. (2.1), has

been used to replace n(t) in (2.6) by the right side of
(2.1). Equations (2.3) and (2.9) then give t—tp

" ln(q's/q') Imn(t')
Xexp- —dt'

t' —tp0

p
(t—tp)

"ln(q") Imn(t') jectory of interest has 0
resultant equations tak„(t'—t) (t'-t, )

where we have normalized U(t) so that U(tp)=0.
Equations (2.1), (2.6), and (2.8) give

r(t) =F(t)q"

Imn(t) =—F(t)qs~o

t—tp
"ln(q"/q') Imn(t')

dt'
7r TQ t —) t —to

Xexp—

t& T,. (2.10)
"F.Zachariasen (private communication). Professor Zacharia-

sen's observation has proven to be of decisive importance in
extracting useful information from our equations.

t & Tp. (2.16)

Equations (2.15) and (2.16) are the desired results.
What we have achieved is a decoupling of Eqs. (2.1)
and (23) so as to obtain an integral equation involving
the sirsgle unknown function Imn(t). Once we have
solved for Imn(t), we can obtain Ren(t) by performing
a simple Hilbert transform. For t& Tp, r(t) is obtained
algebraically from the unitarity condition (2.3) and,
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and
rr+( —W)=n (W)

r ( W)= ——r (W).

(2.18)

(2.19)

The function n+(W) is real analytic and satisfies a
dispersion relation"

Imn+ (W') d W'O' —H/ p

(W) = (Wo)+
(W' —W) (W' —W,)

Imn 5"' dW( )
(2.20)

u r (W'+W)(W'+Wp)

~h~~e Wr= (m,+m )iss the total c.m. threshold of the
system and 5'p the energy at the point of subtraction.
In writing this dispersion relation, we have ignored the
branch cuts arising from the crossing" of the trajectories
o.+ and~ .

The unitarity condition satisfied by these amplitudes
is of the form

W—TVO

Lf+(J W)-f+*(J*W)3/»= qf~*(J*,W)f~(J,W),
W) Wr . (2.21)

for other values of t, it can be obtained from the dis-
persion relation for r(t)e '~ &'& if m, =ms, and from Eq.
(2.9) in the general case.

Equation (2.15) has many attractive features. It
incorporates the known threshold behavior of Imn(t),
it exhibits the possible zeroes of r(t) explicitly, it has a
reasonable asymptotic behavior, and it is in a form
which suggests the possibility of a solution by some
iteration procedure. If this is the case, it is plausible
that the solution is unique if Renp, r (tp) and the location
of any possible zeroes in r(t) is given. These and other
properties of the integral equation (2.15) for Ima(t)
are discussed in Sec. III. Here we shall proceed directly
to a derivation of the integral equations which govern
Imn(t) in case a fermion Regge pole is exchanged in the
t channel.

We shall consider Regge poles in the partial-wave
amplitudes f~(J,W), W=gt, which describe transi-
tions in states of definite total angular momentum
J=l+ ~~ and orbital angular momentum L. These ampli-
tudes have the following symmetry" ":

f+(J, —W) = f (J,W—) . (2.17)

Accordingly, the Regge pole parameters connected with
fg(J,W) satisfy" "

We approximate the unitarity condition (2.21) by

r~(W+ie) = (1/q) Imn~(W+ie), W) Wr. (2.22)

The functions f+(J,W) have kinematic singularities
and, as a result, the functions r~(W) have kinematic
singularities. However, the functions

W f~(J,W)
hp(J, W) =

E+m. (q')~ &

(2.23)

where E is the energy of the particle u

W'+m, '—m ps

do not have kinematic singularities. ' Therefore, the
functions (W/E&m, )r~(W)/(q') &~& & are real analytic
in the TV plane, with branch cuts from 8'z to and
from — to —8'~. Consequently, we have

r~(W —ie) =r~(W —ie)e'~i&~+&ir ~~& &&. (2.24)

I.et us consider the amplitude h+(J,W). As before, we
write

W r (W)

8+m, (q') +i~»
=F(W) e~'~&, (2.25)

where F(W) is an entire function of W and U(W) is
analytic in 8' cut from W& to ~ and from —~ to
—W~. We obtain

8'—8'p
U(W) =— Im~ (W') lnq'-'

dW'
r (W' —W) (W' —Wp)

Imer (W') lnq"
d W'. (2.27)

w, (W'+ W) (W'+ Wp)

From (2.25), (2.26), and. (2.27) we get

U(W+ie) U(W——ie) = 2i Imo+(W+ie) —lnq',

W) Wr (2.26a)
and

U(W+ie) —U(W —ie)=2i Imn (—W+ic) ln~q'~,
W - —Wr. (2.26b)

The above equations give

r (W)=
ln (q "/q')

Imrr+ (W') d W'

r (W' —W) (W' —Wp)

W—Wp " In(q"/q')

u r (W'+ W) (W'+ Wp)

8+m, ~'—~o
(q') '~wo& —&F (W) exp—

'r w

Imn (W')dW', (2.28)

"S.W. MacDowell, Phys. Rev. 116, 774 (1960)."' W. Frazer and J. Fulco, Phys. Rev. 119, 1420 (1960)."V.N. Gribov, Zh. Eksperim. i Teor. Fiz. 43, 1329 (1962) Ltranslation: Soviet Phys. —JETP 16, 1080 (1963).
"V. Singh, Phys. Rev. 129, 1889 (1963);N. Dombey (private communication).



H. CHENG AND D. SHARP

and
pE+m,

Imu+(W) =
I (q )I+&~»F (W) exp

W

ln (q"/q')

s „(W'—W) (W' —Wp)
Imn+ (W') d W'

Also, we have

r (W)= —r (—W)

8'—8'p ln (q"/q')
Imn (W')dW', W& Wr. (2.29)

sr (W'+W)(W'+Wp)

(E m.)—
~(q')~+&~» —&F (—W) exp(W)

ln(q"/q')

r (W'+W)(W' —Wp)
Imn+ (W') dW'

and

W+ Wp " ln(q'P/q')
Imn (W')dW', (2.30)

sr (W' —W)(W'+Wp)

E—m, )
Imn (W)= — j(q') +&~»F(—W) exp

W )
ln (q "/q')

r (W'+W) (W' —Wp)
Imn+ (W') dW'

ln(q'P/q')
Imn (W')dW', W& Wr. (2.31)

r (W' —W) (W'+ Wp)

The function F(W) is a polynomial of order I in W, and satisfies

n+2n (~)(0,
and, hence, can be written as

S'p 1 ~ t'W —Z, )F (W)=,r+(Wo) III
Ep+m, (qp')~+&~pi —'* ~=i gawp —Z,)

Wp E+m, ~ W—Z)
Imu+(W) = q(q'/qp')"' " 'r+(Wo) II

W E,+m. '=i Wp —Z,)

where Z, are the zeroes of r+(W).
We thus obtain the following set of coupled integral equations to solve for Imn+(W):

Xexp—
W—Wp " q'P) Imn~(W') Imu (W')

ln —
/

w q') ( ' —W) (W' —Wp) (W'+ ) (W'+ Wp)
dW', W& W~, (2.32)

Wp E m. — ~ (Z;+W)
Imn (W)= — q(q'/qp')~+&~» Ir~(wp)III

W E,+m.
' .= &Z,—W,)

Xexp
Imnp(W') Imn (W')W+ Wp " q")ln—

q') (W'+ W) (W' —Wp) (W' —W) (W'+ Wp)
dW', W& Wr. (2.33)

Given Imn+(W), we may obtain the functions r+(W) from (2.28) and (2.30).

III. FORMULATION AND DISCUSSION OF A SET OF INTEGRAL EQUATIONS
FOR THE REGGE PARAMETERS: POTENTIAL THEORY CASE

In this section we shall turn to the formulation of a set of integral equations for the Regge parameters in the
case when the scattering may be described by a superposition of Yukawa potentials. This topic is of interest
because the most clear-cut check on the validity of our approximate form of the unitarity condition comes from a
comparison of our results for the Regge parameters, computed for a single Yukawa potential, with the existing
results found by numerically solving the Schrodinger equation. Secondly, we can establish, in this case, several
rather precise theorems regarding the properties of the integral equation which we shall derive for Imn(v). Here,
s =k' is the energy.
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(3 1)
Writing

f 0 to ~ when crossing of trajec-r v P ("' are both real analytic functio f'ons of v cut from o ~,
f th it it o diti dThe a roximate form or e u

'
tories is neglected. The app

r(v)=Imn v v.

g the p

v —vpV a0~ V—V;

exp
vp

ln(v'/v)

P P P —Vo

ln(v'/v)

V
—P V —

Vp

and
v «v —v;

r v =r vo — — exp
vp

P—Po

r(v)/v =F(v)e &"'

in the relativistic case, w
~ ~ ~

we obtain1
'

same rocedure as inand appiyin

(3.2)

(3.3)

(3.4)
and

v denotes the point of subtraction and v;, z—,
f the eroes of r( ).~ m gives the location o

th elationship betwee nWe would now liklike to s ow t e re
d th asymptotic

e

the number of zeroes of r, v) an e
behavior of the Regge parameters.

) a (~)+n+~zImn(v) ~ p

(3.12)

is real, then the cut isw ic is a finite number. If v, is
5,9,11from v, to ~. Now»"

Imn(v) ~ —(g'/2& v)

«(v) ~ —(g'/2 v)

and r(v) is real for v real. Thus,

I ( )~ v "'"i v~0. (3 5)IQlo,'v ~ p

E uation q. s o(34) shows that the nummber of zeroes is

r(v )v

and therefore,
2

v lnv as v~ ~
2 3.13DU(v)+AW(v) ~ —2i Imn(v) lnv as v —+ pp, .13—+0.

q
bounded by

(3.6)

3.5) gives.5)
'

the familiar thresho ld behavior of
h

'
ht-hand planet eh Regge poles in t e rig

(3.7)Ren(0)) —-', .

actually independent of our approxi-'o( )
e this statement, we reca a

'h f 0y
well as those coming from the crossin

rite

Thus, we have

1 AW(v')
U()+W(.)-— "AU(v')

dv
P —Pp

v ~ ~, (3.14)

s 3.8 (3.11), andwhich is a ni e nufi 't number. Equations ( . ),
(3.14) together give

~ pa(~)+n V~rv~pWe can therefore w

r(v) = v &"&Ii(v)e~&"&eU(2 ) W'(V) 3.8

anal tic in v cut from 0 to pp and W(v)
f i ofith cuts arising romis analytic in v wit

nd W'(v) can be wrjectories. The functions U(v) an v c
in the form

(

w e
'

b r of zeroes of r(v). Comparingwhere e is the num er o z
3 12 and (3.15), we conclude that

(3.15)

«i= —n(~) —1. (3.16)

v —vp
" 1 d U(v')

0 P —P V —Pp

U(v) =

and
v —vp 6W(v') d v'

2

o)

nd BW(v) are the discontinuities
he cut, and c is the contour of the() ()

rossin of trajectories.'g o o 'g
straight line" going from v, to v, an

1 0 W(v')
W(v) - —— dv',

7l c P —Vo

and
( )/ p]v p+'*e~&"), v)0. 3.17Imn(v)=L« vp vp p v

at v= 0, then we obtainIf we take the subtraction point at v=

' iPi '"e ("'dv' (3.17a)U(v) = —X— v' iPi e
'

v(3.11)

itten
'

ctor having n ( pa )= —1, there-

3 2 f r the lead'ng t a' ct r
which has no zero. Then we m yma write

r v v —vp)
" ln(v'/v)Vo V —Vo
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and

where

Imn(v) =7 v &o&+&e~&"', v&0,

X= lim
0 v~(")

Xt and Xs but the same subtraction constant n(0). Then
a change of variable shows that

U&&&~ (= U&s)~
[ (3 19)

(Ly J &oi+t/sj t, D& ] &o)+t/s]

And, if we take the subtraction point at v= ~, then we

have "in(v'/v)
U(v) = —— v' &"'+"e~&"'/dv' (3.17b)

7l 0 V v

and as a result

(
&x"'~ (=&s&'&~ . (3.20)

(p g~io)+&/s// (p Ja&o)+t/s

In particular, we have

Imn(v) =Xv &"~+ie " v)0, o, i&) (eo ) —/xi&) (eo ) (3.21)
where

r(v)
X= lim

V
(v)

We should like to point out several interesting conse-
quences of Kqs. (3.17a) and (3.17b). We require
Imn(0)=0 and Imn(eo)=0. Thus, the following in-

equalities have to be satisfied:

~(0)& —
s

A

(3.18a)

(3.18b)

"M. Jell-Mann and F. Zachariasen (private communication).

If we take n(~) =—1, which is correct for the leading
trajectory, then (3.17b) shows that Imn(v) has the cor-
rect asymptotic form as v~ eo, providing X=g'/2.
The solution of (3.17b), which is the equation having
the subtraction point at v= ~, should thus be expected
to give a good approximation to n(v) and r(v) at large
v. For the same reason, the solution of (3.17a), which

gives the correct threshold behavior, should approxi-
mate n(v) and r(v) accurately at small v. It has been
pointed out to the authors'~ that (3.17b) is dependent
on the coupling constant g' only and is independent of
the range p of the potential. But (3.17b) is good only
for v large, and when the energy is large the mass can
usually be neglected. In fa.ct, the asymptotic forms for
o. (v) and P(v) have been shown to be independent of
p, . It is therefore natural that the range of the potential
does not enter in (3.17b). On the other hand, if we
make a subtraction at v=o, or at some point vo near
zero, then the solution will be accurate at low energy
if the subtraction constants o/(vo) and r(vo) are both
supplied. It should be noticed that if we make a subtrac-
tion at some finite point vo, then the solution of (3.17)
would not automatically give n(~)= —1, in disagree-
ment with the known behavior of the trajectory. How-
ever, in this case, we expect the solution to be accurate
only at low energy, and its behavior at v= ~ cannot, in
general, be expected to be given in a precisely correct
way using our approximate equations.

Suppose we have two functions U&'&(v) and U&s&(v)

satisfying (3.17a) with different subtraction constants

Thus, we see that n (~ ) is determined by the subtraction
constant n(0) and is independent of X. Similarly, the
solutions of (3.17b) give the same a(0), if n(ee) is
6xed and X is varied, and equalities similar to (3.19)
and (3.20) hold.

Now let us turn to the question of the existence of
a solution of Eq. (3.17a) or (3.17b). First, it is clear
that because of Kqs. (3.19) and (3.20), if there is a solu-
tion of Eq. (3.17a) for a certain 'A and n(0), then there
is always a solution of Eq. (3.17a) for an arbitrary X

and the same n(0). The same is true for (3.17b). The
question of existence and uniqueness of a solution de-
pends on the subtraction constant &s(0) )or a(eo )j only.
Secondly, (3.17a) does not have a solution for an arbi-
trary n(0). A necessary condition for the existence of a
solution of Eq. (3.17a) is Kq. (3.18a). For, if there is a
solution of Eq. (3.17a), then U(0) =0, and the integral
on the right side of (3.17a) does not converge at the
end point v =0 unless (3.18a) is satisfied. Similarly, a
necessary condition for the existence of a solution of
Eq. (3.17b) is (3.18b).

Some precise theorems on the existence and unique-
ness of the solutions of Eqs. (3.17a, b) can be proved"
if certain conditions on the subtraction constants are
satisfied.

IV. REGGE POLE PARAMETERS FOR A SINGLE
YUKAWA POTENTIAL. PRESENTATION

AND DISCUSSION OF RESULTS

The Regge pole parameters associated with a single
Vukawa potential of unit range have been obtained by
Ahmadzadeh, Burke, and Tate~ and by Lovelace and
Masson, ' for several potential strengths. Ahmadzadeh
et aL.' obtained their results by solving the Schrodinger
equation numerically, while Lovelace and Masson' used
a continued fraction technique applied to the known' ' "
form (in potential theory) of the asymptotic (k' —+ ~)
expansions of the Regge parameters.

A comparison of the Regge parameters as calculated
using Eq. (3.2) of the preceding section with the results
of Ahmadzadeh et aL.' and Lovelace and Masson'
provides an important test of the accuracy of our ap-

' H. Cheng (to be published).
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TABLE I. A list of values of P~ and n~(0) for input parameters
cI, (m, ')=1 and ImIs, (m, ')

Imn p(m, s)

0.005
0.010
0.025
0.100

Ima p(m, s)
r ——

P

m...(m,2)

3.79 m
4.45 m
6.35 m

189 m

0.990
0.983
0.966
0.913

FIG. 12. P' trajectory and p-meson trajectory. Renp (t) versus ts
ReIsI, (t) versus t, —O.g(BeV/c)'&t& ~. The input parameter;
were: (a) For the P'; u„(0)=0.50, o +'(s) (s= 20(BeV)s) = 5 mb;
(b) for the p, Ren~(mp) =1, Imcx~(m~') =0.10.

significant because the region where the comparison is
made is very close to the subtraction point (f=0), which
is, of course, the region in which our results are most
reliable. Secondly, the results are not extremely sensi-
tive to the value of the input parameter o (~).

The fact that our result for Reo,„agrees with that of
Foley et uI. ' naturally implies that it disagrees with
Reo.„as it has so far been determined from an analysis
of E.V scattering data. ' '

We do not have a resolution of this puzzle. However,
we do feel that it is more likely that the m V rather than
the ES angular distributions are dominated by the
Pomeranchuk trajectory. The reason for this is that
the statement that the Pomeranchuk trajectory domi-
nates XX scattering, which depends on the assumption
of a cancellation of large contributions from the I" and
oI (or perhaps p) trajectories, ""is much more model-
dependent than the conjecture that it dominates ~Ã
scattering.

We note from Fig. 9 that Ren„(f) does not pass
through 2 for any value of f. This implies that there is
no spin-2 resonance on the Pomeranchuk trajectory.
However, it may well be that the inclusion of inelastic
states could change this conclusion. Moreover, the re-
gion where the curves peak Lt 2 or 3 (BeV/c)'] is
rather far away from the subtraction point, which may
result in further inaccuracies.

We have also obtained solutions for the I"trajectory, '
assuming n„(0)= rsand, quite arbitrarily, that at f=0
and s 20 (BeV)' it contributes 5 mb to the total srsr

cross section. Results are shown in Figs. 12 and 13. It
is of interest to note that Re+„ falls off considerably
faster for negative t than does the Pomeranchuk tra-
jectory, and that it reaches its peak value at a much
lower energy Lf 0.15 (BeV/c)'].

Lastly, we have obtain ed solutions for the p tra-
jectory.

"F.Hadjioannou, R. J. N. Phillips, and W. Rarita, Phys. Rev.
I.etters 9, 183 (1962)."D, H. Sharp and W. G. Wagner, Phys. Rev. 131,2224 (1963).

In this case, we solved for the trajectories in the
following way. We used the fact that Ren, (sr', ') = 1 and
then we chose a reasonable corresponding value of
Imu, (ssr, '). We then obtained a set of solutions corre-
sponding to these parameters, computed e„(str,') and
checked to see if the width as given by

where
sts pI"

p Imrs——,(srs p')/e p (stp'),

e p (SSSp') =d ReIr, /df
~

I

(5.1)

(5 2)

I 40/

I

0.50
I

t.00
I

2.00
f (BeVjc)s

I

4.00

FIG. 13.P' trajectory and p-meson trajectory. Im~„.(t) versus t;
Imn„(t) versus t, 0.0g(BeV/c)'&t& ~. These curves were calcu-
lated with the input parameters listed in the caption of Fig. 12.

sI S. J. Lindenbaum (private communications).

came out correctly. Using this trial and error procedure,
we were not able to find a set of parameters which gave
a precisely correct value for the p width.

In Figs. 12 to 15, we display our results for ReIr, (t)
and Imn, (t) for several values of the input parameter
Imn, (mp'). The corresponding values of the width and
n, (0) are summarized in Table I.

It is to be noted that we obtain a very large value of
Ir, (0), and that we find Ir, (t))0.90 for —0.80 (Be V/c)'
&f:0 (Fig. 14). This fact is quite insensitive to the
magnitude of the input parameter n, (sIr,'). Thus, we
feel that the numbers we obtain for n, (t), f =0 or f &0,
may not be modified greatly by the inclusion of inelastic
states. The value of Ir, (t), —0.80 (BeV/c)'&t 0, that
we find seems to be consistent with the recent observa-
tions of Lindenbaum et al.23 who find little or no energy
dependence of the sr' angular distributions. This sug-



QUATIONS FOR REGGE POI F PARAMF TERS 1865

-0.6

—-- Imac aO.OIO

Imao 0.025—"—Imac ~0.005

0.6
I

-0.6
I

I

OP

-014
I

I-0.4

-O.R
I

I I-02 0
0 OR

I

0.5

v
25+ v

Oee 0.6 OA
I I I

I.O R.O 4.0—f (BeV/c)

Fio. 14. p-meson trajectory. Ren, (t) versus t, —0.8(BeV/e)'(t & ~. The three curves shown were calculated from the input
Parameters: (a) Ren, (mrs) =1, Imn~(mrs) =0.005; (b) Renr(mre)
=1, 1mn~(mre)=0. 010; (c) Renr(m )=1, Imnr(m )=0.025.

gests that 0.80 (u, (D) 1, while we find typicallypica y
n, (0) 0.98. An analysis of earlier data" on the ~+p
total cross sections, restricted to incident momenta
greater than 10 BeV/c may also support the conclusion
that n, (0) is 0.80 or larger. "Moreover, one should
bear in mind that the 0-„„data is so poor that a determi-
nation of n, (0) 0 4from. that data is without much
stati. stical significance. "

The width of the p meson comes out too large b aya
factor of 5, assuming F, 100 MeV. This, no doubt,
indicates that inelastic states must be included in order
to obtain the p width correctly. This is probably not
surprising in view of the results of other attempts to
determine the p width dynamically. "
d

ere is an additional complication that enter ths e
etermination of the widths from our Regge paramete

Thi
me ers.

is is the fact that e, (ttz, ') is a small difference of large
quantities, and a very small percentage error 'n

R.Ren, ( s%) may result in very large errors in

ep ( 100%). This may account for some of the error in
our value of the p width.

Finally, we would like to record that we found
Ren~ (ao ) —0.66 (o = 15 mb); Ren„( eo ) —0.63
and Ren, (oo ) —0.56 LImn, (m, ') =0.10$. We have
made no explicit assumption about the asymptotic
behavior except that Imn(t) ~ 0 as t ~ ~.

In the potential theory case, where a comparison with
an exact solution is possible, the agreement is gratifying
in most instances.

We do not understand why, in the nonrelativistic
case, the accuracy of the solution obtained appears to
be poorest when the potential strength is in the range

A 3. It may mean that, for A in this range, the
one-pole approximation is not adequate. Alternatively,
this trajectory may cross another, in which case the
equations must be formulated differently. "

In the relativistic case, the solutions obtained for
the Pomeranchuk trajectory agree quite well with the
experimental results of Foley et al.' Our solution fso u ions or
t e p trajectory give a value of rrr( 0) which seems to be
consistent with recent measurements of I.indenbaum
et a/. 23 However, we find that the width of the p reso-
nance comes out too large. The inclusion of inelastic
channels should improve the results. But whether we
can achieve quantitatively accurate solutions by in-
cluding just the two-body inelastic channels remains to
be seen.

The work carried out in this paper suggests a number
o interesting problems, both analytical and numerical,
for further investigation.

We have mentioned the problem of including the
inelastic channels in the equations, and finding their
effect on, for example, the p width.

~ ~

A critical test of our equations can come from a
determination of the fermion trajectories, using the
equations derived in Sec. II. For example, if we supply
the mass of the nucleon and the vcr coupling strength,
can we predict the position and width of the f» reso-
nance that is believed to lie on the nucleon trajectory'
If so, the same method can be used to discuss all the
meson-baryon resonances.

We have noted (Sec. V) that the Pomeranchuk tra-
jectory Ren~(t) that we obtain is in agreement with that
obtained from m.E scattering, but not with the results
from EE scattering. This probably means that several
Regge poles contribute in an important way to EE scat-

0.50

VI. CONCLUSION

We have presented in this paper an approximate
method for the dynamical determination of the Regge
pole parameters. The equations we have derived f r
h't is purpose are simple in structure and rather easy to

solve numerically.

~ S. J. Lindenbaum, W. A. Love, J. A. Niederer, S. Ozaki, J.J.
Russell, and L. C. L. Yuan, Phys. Rev. Letters 7, 352 (1961).

» V. I. Lendyel and J. Mathews (private communication).
'6 See, for example: F. Zachariasen and A. C. Zemach, Phys.

Rev. 128, 849 (1962), who Gnd 1'r 400 MeV after including the
contribution of w~ intermediate states.

I

0.50 4.00 —t (BeV/c)

Fio. 15. p-meson trajectory. Imn, (t) versus t, 0.08(BeV/e)'
&t& cc. The three curves shown were calculated using the input
parameters listed in the caption of Fig. 14.



i866 H. CHENG AN D D. SHARP

tering at presently explored energies. To achieve a
correct understanding of high-energy .VA' and 3;E
scattering, which, because of the spin structure of the
amplitudes will involve the application of our equations
in the many-channel case, forms another interesting
and important problem.

Turning now to analytical problems, it is clear that
an improvement of the one-pole approximation for the
partial-wave amplitude is very desirable. By including
the correct contribution of a few nearby poles in the
partial-wave amplitude, one could probably obtain
satisfactory solutions in al/ instances for the potential
case. A representation of the partial-wave amplitudes
solely in terms of Regge pole parameters should help
such a formulation.

It would be interesting to learn if the zeroes of the
residue functions, which appear as input parameters in
our equations in their present formulation, can be
determined if several poles are coupled together. If this
is not the case, how can one determine the number and
location of the zeroes af a given trajectory? The residue
functions of the Pomeranchuk trajectory have a zero
when n„passes through zero. Since we have not taken
account of this fact in the numerical work carried out
here, it will be interesting to see how the solutions are
modi6ed if a zero is supplied.

Finally, we wish to repeat that one feature of disper-
sion theory, the crossing symmetry, has so far been
totally neglected in our method. An application of the
crossing theorem may enable one to determine many of
the subtraction constants in a self-consistent manner.
Work in this direction is still lacking.
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APPENDIX: RELATIONSHIP OF THE TOTAL CROSS SECTION TO THE RESIDUE FUNCTION"

The contribution of the Pomeranchuk trajectory to the ~~-scattering amplitude A ($,t) is
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This formula is valid for all $ and u. Now let us consider the physical region in the $ channel; $ ~ +~, t—4m '(0
and fixed. Then u= ~u~e+' . Equation (A2) then gives
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The amplitude A ($,t) is related to the total or~-scattering cross section by

Now
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Evaluating (A5) at t= 0 and setting n~(0) = 1, we find
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A similar derivation, of course, applies to any other trajectory.
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